- آلیاری، ه. ، شکاری، ف. و شکاری، ف. 1379. دانههای روغنی زراعت و فیزیولوژی. نشر عمیدی، تبریز، ایران.
- زارع حقی، د.، نیشابوری، م. ر.، گرجی، م.، صادقزاده ریحان، م. ا. و عمارتپرداز، جاوید.1393. ارزﯾﺎﺑﯽ داﻣﻨﻪ رﻃﻮﺑﺘﯽ ﺑﺎ ﺣﺪاﻗﻞ ﻣﺤﺪودﯾﺖ در داﻧﻬﺎلﻫﺎی ﭘﺴﺘﻪ رﻗﻢ ﺳﺮﺧﺴﯽ. ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶ آب در ﮐﺸﺎورزی. جلد 28 .شماره 2: 363 -353.
- شرکت دانههای روغنی. 1375.آمار تولید و مصرف روغن در طی دهههای اخیر و دلایل افرایش و کاهش ان. انتشارات شرکت سهامی توسعه کشت دانههای روغنی. تهران.
- عُنّابی میلانی، ا. 1395. ارزیابی شاخصهای LLWR و IWC در سطوح مختلف شوری خاک با استفاده از سرعت صعود شیره آوندی در درخت بادام. پایاننامه دکتری علوم و مهندسی خاک. دانشگاه تبریز.
- عُنّابی میلانی، ا.، ﻧﯿﺸﺎﺑﻮری، م.ر.، مصدقی، م.ر. و زارع حقی، د.،1394 . واﮐﻨﺶ ﻫﺪاﯾﺖ روزﻧﻪ ای ﺑﻪ ﺗﻐﯿﯿﺮات ﭘﺘﺎﻧﺴﯿﻞ آب ﺑﺮگ و دﻣﺎی ﺗﺎج در درﺧﺖ ﺑﺎدام ﺗﺤﺖ ﺗﻨﺶ ﺷﻮری و ﮐﻤﺒﻮد آب. ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶ آب در ﮐﺸﺎورزی. جلد 29 .شماره 3: 316-297.
- ﮐﺎﻇﻤﯽ، ز.، ﻧﯿﺸﺎﺑﻮری، م.ر.، ﺑﯿﺎت،ح.، اوﺳﺘﺎن ش.، و ﻣقدم، م.1393. ﮐﺎراﯾﯽ ﻣﺪلﻫﺎی ﺑﺮآورد داﻣﻨﻪ رﻃﻮﺑﺘﯽ ﺑﺎ ﺣﺪاﻗﻞ ﻣﺤﺪودﯾﺖ در ﺧﺎک. ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎی خاک: ج. 28. شماره 4: 699-688.
- Asgarzadeh, H., Mosaddeghi, M.R., Mahboubi, A.A., Nosrati, A., and Dexter, A.R. 2010. Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity. Plant and Soil. 335(1-2): 229–244.
- Asgarzadeh, H., Mosaddeghi, M.R., and Nikbakht, A.M. 2014. SAWCAL: A user friendly program for calculating soil available water quantities and physical quality indices. Computers and electronics in agriculture. 109:86-93.
- Chahal, S.S. 2010. Evaluation of soil hydraulic limitations in determining plant-available-water in light textured soils. PhD thesis. School of Agriculture, Food and Wine. The University of Adelaide. Adelaide, South Australia, Australia.
- Chan, K.Y., Oates, A., Swan, A.D,, Hayes, R.C., Dear, B.S., and Peoples. M.B. 2006. Agronomic consequences of tractor wheel compaction on a clay soil. Soil Till Res 89:13–21
- da Silva, A.P., Kay, B.D., and Perfect, E. 1994. Characterization of the least limiting water range of soils. J. Soil Sci. Soc. Am. 58:1775–1781
- da Silvaو A.P., and Kay, B.D. 1997 Estimating least limiting water range of soils from properties and management. J. Soil Sci. Soc. Am. 61:877–883.
- FAO. 1985. Irrigation Water Management: Introduction to Irrigation Chapter 7: Salty Soils.
- García-Tejero, I., Durán-Zuazo, V.H., Arriaga, J., Hernández, A., Vélez, L.M., and Muriel-Fernández, J.L. 2012. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 67: 463–474.
- Gee, G.W., and Or, D. 2002.Particle size analysis. In Dane, J.H., Topp, C.G. (Eds.), Methods of Soil Analysis: Part 4, Physical Methods. SSSA Book Series 5.3.SSSA, Madison, WI. USA. pp: 255-293.
- Grant, C.D., Groenevelt, P.H., Robinson, N.I., and Chahal, S.S. 2010. The matric flux potential as a measure of plant-available water in soils restricted by hydraulic properties alone. 19th World Congress of Soil Science, Soil Solutions for a Changing World.
- Groenevelt, P.H., Grant, C.D, and Semetsa, S. 2001. A new procedure to determine soil water availability. Australian Journal of Soil Research 39: 577-598.
- Groenevelt, P.H., Grant, C.D., and Murray, R.S., 2004. On water availability in saline soils. Australian Journal of Soil Research 42: 833-840.
- Gonzalez-Dugo, V., P. Zarco-Tejada, J.A.J., Berni, L., Suarez, D., Goldhamer, and Fereres, E. 2012. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agric. Forest Meteorol. 154–155: 156–165.
- Helyes, L., Pék, Z., and McMichael, B. 2006. Relationship between the stress degree day index and biomass production and the effect and timing of irrigation in snap bean (Phaseolus vulgaris var. Nanus) stands: results of a long term experiments. Acta Bot. Hung. 48: 311–321.
- Idso, S.B., Jackson, R.D., Pinter, P.J., Reginato, R.J. and Hatfield, J.L. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 24: 45–55.
- Jones, H. 2007. Monitoring plant and soil water status: established a novel revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58: 119–30.
- Klute, A., 1986. Water retention: Laboratory Methods: In: Klute, A., (Ed.) Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. SSSA Book Series. Agron. Monogr.9. ASA and SSSA, Madison, WI. USA. pp: 635-662.
- Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water. Resur. Res. 12 (3):513-522.
- Nang, N.D., Grant, C.D., and Murray, R.S. 2010. An evaluation of plant available water during reclamation of saline soils: Laboratory and field approaches, 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia. Published on DVD.
- Neyshabouri, M.R., Kazemi, Z., Oustan, Sh., Moghaddam, M. 2014. PTFs for predicting LLWR from various soil attributes including cementing agents. Geoderma, Vol. b226-227: 179-187.
- Sparks, D.L., Page, A.L., Helmke, P.A. Leopert, R.H. (Eds), 1996. Methods of Soil Analysis Part 3-Chemical Methods. SSSA Book Ser 5.3.SSSA, ASA, Madison, WI.
- Van Genuchten, M.Th. 1980. A closed- form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892- 898.
- Van Genuchten, M.Th., Leyj, F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils.EPA/600/2-91/065, R.S.Kerr Environmental Research Laboratory, US Environmental Protection Agency, Ada, OK. 93.
|