1. Anders, S., P.T. Pyl and W. Huber. 2014. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics btu638.
2. Bolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformaticsbtu 170.
3. Chaplais, E., H.J. Garchon, M.E. Chaplais and G. AnnotationDbi. 2015. Package ‘stringgaussnet. http://www.et.bs.ehu.es/cran/web/packages/stringgaussnet/stringgaussnet.pdf. Accessed 25 March 2017
4.Deato, M.D.E., M.T. Marr, T. Sottero, C. Inouye, P. Hu and R. Tjian. 2008. MyoD targets TAF3/TRF3 to activate myogenin transcription. Molecular cell 32(1): 96-105.
5. Dehmer, M., L.A. Mueller and F. Emmert-Streib. 2013. Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers.PloS One 8(11): e77602.
6. Du, P., J. Gong, E.S. Wurteleand J.A. Dickerson. 2005. Modeling gene expression networks using fuzzy logic.IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35(6): 1351-1359.
7. Dunner, S., N. Sevane, D. García, O. Cortés, A. Valentini, J. Williams, B. Mangin, J. Cañón, H. Levéziel and G. Consortium. 2013. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livestock Science 154(1): 34-44.
8. Friedman, N., M. Linial, I. Nachman and D. Pe'er. 2000. Using Bayesian networks to analyze expression data. Journal of computational biology 7(4): 601-620.
9. Glass, L. and S.A. Kauffman. 1973. The logical analysis of continuous, non-linear biochemical control networks. Journal of theoretical Biology 39(1): 103-129.
10. Hedden, M.P. and M.G. Buse. 1982. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis. American Journal of Physiology-Endocrinology And Metabolism 242(3): E184-E192.
11. Imoto, S., T. Goto and S. Miyano. 2001. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In:Pacific symposium on Biocomputing. Kauai, Hawaii.Volume. 7, pp. 175-186.
12. Jiang, J., Y.-S. Chan, Y.-H. Loh, J. Cai, G.-Q. Tong, C.-A. Lim, P. Robson, S. Zhong and H.-H. Ng. 2008. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature cell biology 10(3): 353-360.
13. Johansen, K.A. and K. Overturf. 2006. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 144(1): 119-127.
14. Keogh, K., D.A. Kenny, P. Cormican, M.S. McCabe, A.K. Kelly and S.M. Waters. 2016. Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine skeletal muscle. PloSOne 11(2): e0149373.
15. Li, Z., J.A. Gilbert, Y. Zhang, M. Zhang, Q. Qiu, K. Ramanujan, T. Shavlakadze, J.K. Eash, A. Scaramozza and M.M. Goddeeris. 2012. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Developmental cell 23(6): 1176-1188.
16. Mangadzuwa, D.A., J. Thiengtham and S. Prasanpanich. 2016. A case study on compensatory growth of emaciated cattle fed on total mixed ration. African Journal of Agricultural Research 11(27): 2397-2402.
17. Martinez, R., J.F. Rocha, D. Bejarano, Y. Gomez, Y. Abuabara and J. Gallego. 2016. Identification of SNPs in growth-related genes in Colombian creole cattle. Genetics and molecular research 15(3).
18. Mauro, A. 1961. Satellite cell of skeletal muscle fibers.The Journal of biophysical and biochemical cytology 9(2): 493-495.
19. Molinelli, E.J., A. Korkut, W. Wang, M.L. Miller, N.P. Gauthier, X. Jing, P. Kaushik, Q. He, G. Millsand D.B. Solit. 2013. Perturbation biology: inferring signaling networks in cellular systems.PLoS Computational Biology 9(12): e1003290.
20. Na, H.H., H.M. Cheong and K.C. Kim. 2016. BMB Reports: SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB reports 49(4): 238-243.
21. Parakati, R. and J.X. DiMario. 2013. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein. Journal of Biological Chemistry 288(19): 13876-13884.
22. Plank, J.L., M.T. Suflita, C.L. Galindo and P.A. Labosky. 2014. Transcriptional targets of Foxd3 in murine ES cells. Stem cell research 12(1): 233-240.
23. Robinson, M.D., D.J. McCarthy and G.K. Smyth. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1): 139-140.
24. Trapnell, C., L. Pachter and S.L. Salzberg. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105-1111.
25. Woo, D.-H., S.-J. Yun, E.-K. Kim, J.-M. Ha, H.-K. Shin and S.-S. Bae. 2012. Regulation of Skeletal Muscle Differentiation by Akt. Journal of Life Science 22(4): 447-455.
26. Yoshida, T., K.H. Kaestner and G.K. Owens. 2008. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circulation research 102(12): 1548-1557.
27. Yoshida, Y., I.C. Wang, H.M. Yoder, N.O. Davidson and R.H. Costa. 2007. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology 132(4): 1420-1431.
28. Yu, Y., L. Qi, J. Wu, Y. Wang, W. Fang and H. Zhang. 2013. Kindlin 2 regulates myogenic related factor myogenin via a canonical Wnt signaling in myogenic differentiation. PloS One 8(5): e63490.
29. Zhan, M., D.R. Riordon, B. Yan, Y.S. Tarasova, S. Bruweleit, K.V. Tarasov, R.A. Li, R.P. Wersto and K.R. Boheler. 2012. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PloS One 7(8): e42350.