میرزاپور, محمد هادی, خاوازی, کاظم, نایینی, محمد رضا. (1396). تأثیر کاربرد گوگرد، باکتریهای تیوباسیلوس و فسفر بر عملکرد کلزا و برخی ویژگیهای شیمیایی خاک. سامانه مدیریت نشریات علمی, 5(2), 109-121. doi: 10.22092/sbj.2018.115683
محمد هادی میرزاپور; کاظم خاوازی; محمد رضا نایینی. "تأثیر کاربرد گوگرد، باکتریهای تیوباسیلوس و فسفر بر عملکرد کلزا و برخی ویژگیهای شیمیایی خاک". سامانه مدیریت نشریات علمی, 5, 2, 1396, 109-121. doi: 10.22092/sbj.2018.115683
میرزاپور, محمد هادی, خاوازی, کاظم, نایینی, محمد رضا. (1396). 'تأثیر کاربرد گوگرد، باکتریهای تیوباسیلوس و فسفر بر عملکرد کلزا و برخی ویژگیهای شیمیایی خاک', سامانه مدیریت نشریات علمی, 5(2), pp. 109-121. doi: 10.22092/sbj.2018.115683
میرزاپور, محمد هادی, خاوازی, کاظم, نایینی, محمد رضا. تأثیر کاربرد گوگرد، باکتریهای تیوباسیلوس و فسفر بر عملکرد کلزا و برخی ویژگیهای شیمیایی خاک. سامانه مدیریت نشریات علمی, 1396; 5(2): 109-121. doi: 10.22092/sbj.2018.115683
تأثیر کاربرد گوگرد، باکتریهای تیوباسیلوس و فسفر بر عملکرد کلزا و برخی ویژگیهای شیمیایی خاک
1مربی پژوهش، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی قم، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران
2استاد پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران
3استادیار پژوهش، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی قم، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران
چکیده
یکی از مشکلات عمدهی خاکهای آهکی، پایین بودن کارآیی کودهای فسفری در اثر رسوب سریع آنهاست. کاهش pH خاک میتواند به حلالیت فسفر کمک کند. بهمنظور بررسی اثر گوگرد و باکتریهای تیوباسیلوس و کود فسفری بر عملکرد کلزا و غلظت برخی عناصر در خاک و گیاه، آزمایشی طی سال زراعی 92-1391 در یک خاک آهکی و فقیر از نظر فسفر، بهصورت فاکتوریل و در قالب طرح بلوکهای کامل تصادفی در سه تکرار روی کلزا (Brasica napus L.) (رقم هایولا-401) اجرا شد. فاکتور اول شامل گوگرد بههمراه باکتری تیوباسیلوس (بهنسبت 2 درصد وزنی گوگرد) در چهار سطح (صفر، 500، 1000 و 2000) (کیلوگرم در هکتار) بهصورت گوگرد عنصری دانهبندی شده (پاستیلی) و فاکتور دوم شامل سه سطح فسفر (صفر، 72 و 110) (کیلوگرم در هکتار) از منبع سوپرفسفات تریپل بودند. برهمکنشی مثبت و معنیدار بین سطوح گوگرد و فسفر مصرف شده در تأثیر بر عملکرد دانه و شاخسار و اجزای عملکرد وجود داشت (5 درصد آزمون دانکن). بالاترین عملکرد دانه و شاخسار با مصرف 2000 کیلوگرم گوگرد (تلقیح شده با باکتری) بههمراه 110 کیلوگرم فسفر بهترتیب معادل 3142 و 12507 کیلوگرم در هکتار بهدست آمد که نسبت به شاهد بهترتیب 9/1 و 5/1 برابر افزایش عملکرد نشان داد. با افزایش مصرف فسفر در سطوح مختلف گوگرد تلقیح شده با باکتری، غلظت فسفر، روی و آهن اندام هوایی کاهش ولی جذب این عناصر افزایش یافت که در بعضی سطوح گوگرد، معنیدار بود. در کلیهی سطوح گوگرد، مصرف فسفر، سبب افزایش روی و آهن قابل جذب خاک شد. مصرف سطوح مختلف گوگرد و فسفر، برهمکنشی معنیدار برکاهش معنیدار pH خاک پس از برداشت داشت. پایینترین pH خاک در تیمار2000 کیلوگرم در هکتار گوگرد تلقیح شده با باکتری بههمراه 110 کیلوگرم در هکتار فسفر مشاهده شد که نسبت به شاهد، 5 درصد، کاهش معنیدار داشت. با توجه به اثر مثبت و معنیدار گوگرد تلقیح شده با باکتری تیوباسیلوس بر افزایش عملکرد دانه از یک سو و کاهش pH خاک از سوی دیگر، مصرف آنها در خاکهای آهکی قابل توصیه میباشد. اگرچه، تعیین مناسبترین دورهی مصرف گوگرد در این خاکها باید مورد مطالعه قرار گیرد.
Effect of Sulfur, Thiobacillus and Phosphorous application on Canola Yield and Some Soil Chemical Characteristics
نویسندگان [English]
M. H. Mirzapour1؛ K. Khavazi2؛ M. R. Naeini3
1Research Lecturer, Qom Research and Education Center of Agriculture and Nature Resources, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2Research Professor, Soil and water institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3Resources, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]
One of the major problems in calcareous soils is low efficiency of phosphorous (P) fertilizers due to rapid precipitation. Lowering soil pH is mentioned as a solution for solubility of precipitated P. In order to investigate the effect of sulfur (S) and thiobacillus sp. bacteria and P fertilizer on canola (Brasica napus L. cv. Hayola-401) yield and nutrient concentrations in soil and plant, an experiment was carried out during cropping season 2012-13, in a calcareous soil which was generally poor in P content. The experimental factors were designed in a complete randomized blocks with factorial arrangement in three replicates. The first factor consisted of S, in 4 levels (0, 500, 1000 and 2000 kg.ha-1) as pastille form as elemental sulfur with sulfur oxidizing bacteria (in 2% rate of sulfur weight) and the second factor including 3 P levels (0, 72 and 110) kg.ha-1)as triple superphosphate. There was a positive and significant interaction between S and P levels on seed and aerial part yield and yield component (p<0.05). The maximum seed and aerial part yield was obtained with applying 2000 kg.ha-1 S (inoculated with Thiobacillus sp. bacteria) along with 110 kg.ha-1 P by 3141 and 3710 kg.ha-1 respectively in which showed 1.9 and 1.5 fold increase in comparison with control. With increasing P applied in each inoculated S levels, aerial P, Zinc (Zn) and iron (Fe) concentration decreased but their uptake increased which in some S levels were much more notable. Increasing P applied in all S levels, raised Zn and Fe available in soil. Applying different levels of S and P had significant interaction in lowering of soil pH after harvesting. The minimum pH of soil was observed in combined use of S (2000 mgkg-1) and P (110mgkg-1) which had a 5% decrease compared to the control. According to the positive and significant effect of sulfur inoculated with oxidizing Thiobacillus sp. bacteria on increasing seed yield, in one side, and lowering soil pH, in the other side, application of them recommend in calcareous soils. Although, determining of the optimal period of sulfur application in these soils should be investigated.
آذرمی، ف.، م.ج. ملکوتی، و ک. خاوازی. 1392. تأثیر تلقیح ریزجانداران حل کننده فسفات در افزایش کارایی و درصد بازیافت کودهای فسفاتی در کلزا. مجله پژوهشهای خاک (علوم خاک و آب) 27(4) : 507-499.
آذری، م.ح. 1370. اثر گوگرد بر قابلیت جذب فسفر خاک. گزارش نهایی طرح تحقیقاتی، موسسه تحقیقات خاک و آب. کرج، ایران.
امامی، ع. 1375. روشهای تجزیه گیاه. موسسه تحقیقات خاک و آب. نشریه فنی982 ، کرج، ایران.
بدون نام. 1394 . آمار نامه کشاورزی. جلد اول. محصولات زراعی و باغی سال زراعی 93-1392. دفتر آمار و فناوری اطلاعات، معاونت برنامه ریزی و امور اقتصاد. وزارت جهاد کشاورزی.
بشارتی، ح.، ی. کوچکزاده، م.ج. ملکوتی و ک. خاوازی. 1378. نقش گوگرد و باکتری تیوباسیلوس در فراهم سازی فسفر در زراعت ذرت. مجله خاک و آب 12 (24): 39-28.
بشارتی، ح. و ر. مطلبیفرد. 1394. ارزیابی تأثیر کاربرد گوگرد و باکتری تیوباسیلوس بر برخی خصوصیات شیمیایی خاک و عملکرد کلزا در تناوب گندم-کلزا در دو سال متوالی. نشریه آب و خاک (علوم و صنایع کشاورزی) 29 (6): 1698-1688.
بشارتی، ح. و ط. ملکزاده،. 1394. تأثیر گوگرد و تیوباسیلوس بر رشد و جذب برخی عناصر غذایی گیاه سویا در چهار خاک آهکی با ظرفیت بافری متفاوت. پژوهشهای خاک (علوم خاک و آب) الف- 29 (2):146-131.
بلویی، ف. 1387. اثر مایکوریزا و تیوباسیلوس بر ویژگیهای کمی و کیفی سویا، پایاننامه کارشناسی ارشد زراعت. دانشکده کشاورزی، دانشگاه آزاد اسلامی، کرج، ایران.
جلیلی، ف.، م.ج. ملکوتی و ر. کسرایی. 1379. نقش تغذیه متعادل بر عملکرد و اجزای عملکرد کلزای زمستانه در منطقه خوی. مجله علوم خاک و تجزیه گیاه 30 (2-1): 234-221.
خادمی، ز.، ح. رضایی، م.ج. ملکوتی و پ. مهاجر میلانی. 1379. تغذیه بهینه کلزا. نشر آموزش کشاورزی.
رمضانپور، م.ح.، ه. اسدی رحمانی و ک. خاوازی. 1391. بررسی تأثیر گونههای مختلف باکتری سودوموناس بر عملکرد، اجزای عملکرد و جذب فسفر سه رقم برنج. مجله پژوهشهای خاک (علوم خاک و آب) 26(3) : 288-277.
علی احیایی، م. و ع.ا. بهبهانی زاده. 1372. شرح روشهای تجزیه شیمیایی خاک. نشریه فنی شماره. 893 ، موسسه تحقیقات خاک وآب. تهران، ایران. 129 صفحه.
قربانی نصرآبادی، ر.1380 . بررسی تأثیر کود میکروبی گوگرد بر توان تثبیت بیولوژیک نیتروژن در سیستم همزیستی سویا- بردی ریزوبیوم ژاپنیکوم. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه تهران.
نورقلی پور، ف.، م. لطف اللهی و م.ج. ملکوتی. 1384 . روشهای بهبود جذب عناصر غذایی در خاکهای آهکی قسمت دوم. نشریه فنی 465 . مؤسسه تحقیقات خاک و آب. انتشارات سنا. تهران، ایران.
Awad, N.M. and K. Khalil. 2003. Bio fertilization of squash plants grow in sulphur rectified sandy soil with Streptomyces venzulane mutant and/or Thiobacillus thiooxidans. Bulletin of National Research Center (NRC), Egypt. 28 (6): 685-694.
Chapman, S. J. 1989. Oxidation of micronized elemental sulfur in soil. Plant and Soil, 116:69- 76.
Chein S.H., R.G. Menon, K. Billingham. 1996. Phosphorus availability from phosphate rock as enhanced by water soluble phosphorus. Soil Science Society of America Journal 60: 1173-1177.
Cifuentes, F. R. and W. C. Lindemann. 1993. Organic matter stimulation of elemental sulfur oxidation in calcareous soil. Soil Science Society of America Journal 57: 727-731.
Giri, P.R., V.S. Khawale, W.S. Power, and A.B. Sonawalle. 2005. Effect of phosphorous and sulphur application on growth and yield of mustard. Journal of Soils and Crops 15 (2): 445-451.
Jaggi, R.C., M.S. Aulakh and R. Sharma. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biology and Fertility of Soils 41:52-58.
Kaplan, M. and S. Orman. 1998. Effect of elemental sulfur and sulfur containing waste in a calcareous soil in Turkey. Journal of Plant Nutrition 21: 1655- 1665.
Liu, H., C. Hu, X. Sun, Q. Tan, Z. Nie, J. Su, J. Liu and H. Huang. 2009. Interactive effects of molybdenum and phosphorus fertilizers on grain yield and quality of Brassicanapus L. Journal of Food, Agriculture and Environment 7 (3&4): 266 - 269.
arschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London.
McCready, R.G.L. and H.R. Krouse. 1982. Sulfur isotope francization during the oxidation of elemental sulfur by Thiobacillus in a solonetzic soil. Canadian Journal of Soil Science 92:105-110.
Miransari, M. and D.L. Smith. 2007. Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. Journal of Plant Nutrition 30:1967-1992.
Modaihsh, S., W.A. Al-mustafa and A. E. Metwally. 1989. Effect of elemental sulfur on chemical changes and nutrient availability in calcareous soils. Plant and Soil 116:95-101.
osa, M.C., J.J. Muchovej and J.V.H. Alwarez. 1989. Temporal relations of phosphorus fractions in an oxisol amended with rock phosphate and Thiobacillus thiooxidans, Soil Science Society of America Journal 53:1096-1100.
Sagare, B., S. Rewatker and P. Shawghare. 1988. Micronutrient harvest by peanut as influenced by sulfur and phosphorus application in vertisol soils, Annual Review of Plant Physiology 2(2): 187-192.
Saha, M. and H. Singh. 1987. Effect of sulphur on prevention of iron chlorosis and plant composition of groundnut on alkaline calcareous soil. Journal of Agricultural Science 109(1): 73-77.
Sakari, A., M.R. Ardakani and K. Khavazi. 2012. Effect of Azospiillum lipoferum and Thiobacillus thioparus on Quantitative and Qualitative Characters of Rapeseed (Brassica napus L.) Under Water Deficit Conditions. Middle-East Journal of Scientific Research 11 (6): 819-827.
Salimpour, S., K. Khavazi, H. Nadian, H. Besharati and M. Miransari. 2010.Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science 4(5):330-334.
Singh, A. L., and V. Chaudhari. 1997. Sulfur and micronutrient of groundnut in a calcareous soil. Journal of Agronomy Crop Science 179: 107- 114.
Singh, R. and B.S. Sinsinwar. 2006. Effect of integrated nutrient management on growth, yield, oil content and nutrient uptake of Indian mustard. Agricultural Science 76 (5): 324-332.
Son, T.T.N., C.N. Diep and T.T.M. Giang. 2006. Effect of bradyrhizobia and phosphate solubilizing bacteria application on soybean in rotational system in the Mekong delta. OmonRice Journal 14: 48-57.
Sundara, B., V. Natarajan and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Research 77: 43-49.
Tate, R. L. 1995. The sulfur and related biogeochemical cycle, P. 359-372, In: Soil Microbiology, John Willey.
Tisdale, S.L., W.L. Nelson, J.D. Beaton and J.L. Havlin. 1993. Soil fertility and fertilizers. 5th ed. Mcmillon Publishing Co., New York.
Venkatakrishanan, S. and I. P. Abrol. 1981. Amelioration of a sodic soil through Thiobacilli inoculation and pyrite application. Journal of the Indian Society of Soil Science 29: 526-529.
Verma, L.N. 1993. Biofertiliser in agriculture. pp. 152-183.In: P.K. Thampan (Ed.). Organics in soil health and crop production. Peekay Tree Crops Development Foundation, Cochin, India.
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571–586.
Bybordi, A. 2010. Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars. Notulae Scientia Biologicae 2 (1): 81-83.
Schofield, P.E., P. Gregg and J.K. Syers. 1981. Biosuper as a phosphate fertilizer: A glasshouse evaluation. New Zealand Journal of Experimental Agriculture 9:63-67.
Yazdani M., M.A. Bahmanyar, H. Pirdashti and M.A. Esmaili. 2009. Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc. World Academy of Science, Engineering and Technology 37:90-92.