Baghlani, A. H. and Hajivandi, Z. 2016. Stabilize the water level in open channels using symbiotic organisms search algorithm. Proceeding of the 9th National Congress on Civil Engineering. May 10-11. Ferdowsi University of Mashhad. Mashhad, Iran. (in Persian)
Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S. M. and Loáiciga, H. A. 2017. Optimal
operation of reservoir systems with the symbiotic organisms search (SOS) algorithm. J. Hydroinform. 19(4): 507-521.
Cheng, M. Y. and Prayogo, D. 2014. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. J. Comput. Struct. 139, 98-112.
Ehteram, M., Allawi, M. F., Karami, H., Mousavi, S. F., Emami, M., Ahmed, E. S. and Farzin, S. 2017. Optimization of chain-reservoirs’ operation with a new approach in artificial intelligence. Water Resour. Manage. 31(7): 2085-2104.
Esat, V. and Hall, M. J. 1994. Water resources system optimization using genetic algorithm. Hydroinform. 94, 225-231.
Hashimoto, T., Stedinger, J. R. and Loucks, D. P. 1982. Reliability, resilience, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 18(1): 14-20.
Holland, J. 1975. Adaptation in Natural and Artificial System. University of Michigan Press.
Kennedy, J. and Eberhart, R. 1995. Particle Swarm Optimization (PSO). Proceeding of IEEE International Conference on Neural Networks. Nov. 27-Dec. 1. Perth. Australia.
Labadie, J. W. 2004. Optimal operation of multi-reservoir systems: state of the art review. J. Water Resour. Plan. Manage. 130(2): 93-111.
Nourani, V., Abolvaset, N. and Salehi, K. 2012. A hybrid goal programming method and adaptive neural-fuzzy inference system for optimal operation of a multi-objective two-reservoir system. J. Iran-Water Resour. Res. 8(2): 1-11. (in Persian)
Panda, A. and Pani, S. 2016. A symbiotic organism search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl. Soft. Comput. 46, 344-360.
Qaderi, K., Arab, D., Teshnehlab, M. and Ghazagh, A. 2010. Intelligent operation modeling of reservoirs using group method of data handling (GMDH). J. Iran-Water Resour. Res. 6(3), 55-67. (in Persian)
Qaderi, K., Akbarifard, S., Madadi, M. R. and Bakhtiari, B. 2017. Optimal operation of multi-reservoirs by water cycle algorithm. Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd.
Sandoval-Solis, S., McKinney, D. C. and Loucks, D. P. 2011. Sustainability index for water resources planning and management. J. Water Resour. Plan. Manage. 137(5): 381-390.
Simonovic, S. P. 1992. Closing gap between theory and practice. J. Water Resour. Plan. Manage. 118(3):
262-280.
Tejani, G., Savsani, V. and Patel, V. 2016. Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J. Comput. Design Eng. 3(3): 226-249.
Tran, D. H., Cheng, M. Y. and Prayogo, D. 2015. A novel multiple objective symbiotic organisms search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowl. Based Syst. 94, 132-145.
Wardlaw, R. and Sharif, M. 1999. Evaluation of genetic algorithms for optimal reservoir system operation. Water Resour. Plan. Manage. 125(1): 25-33.
Yeh, W. G. 1985. Reservoir management and operation models: a state-of-the-art review. Water Resour. Res. 21(12): 1797-1818.