Ariyanfar, A., Shafaei-Bejestan, M. and Khosrojerdi, A. 2008. Investigation of shear stress distribution around slotted bridge piers by using Fluent. Proceeding of 7th Hydraulic Conference, Power & Water. 12-14 Nov. University of Technology (PWUT). Tehran, Iran. (in Persian)
Baraniya, S., Olsen, N. R. B., Stoesser, T. and Sturm, T. 2012. Three-dimensional RANS modeling of flow around circular piers using nested grids. Eng. Appl. Comput. Fluid Mech. 6, 648-662.
Breusers, H. N. C. and Raudkivi, A. J. 1991. Scouring-hydraulic structures design manual. IAHR, Rotterdam, Netherland.
Dargahi, B. 1990. Controlling mechanism of local scouring. J. Hydraul. Eng. ASCE. 116(10): 1197-1214.
Dey, S., Bose, S. K. and Sastry, G. L. N. 1995. Clear-water scour at circular piers: a model. J. Hydraul. Eng. ASCE. 121(12): 869-876.
Drysdale, D. M. 2008. The effectiveness of an aerofoil shaped pier in reducing downstream vortices and Turbulence. Ph. D. Thesis. University of Southern Queensland.
Ettema, R. 1980. Scour at bridge piers. Ph. D. Thesis. Auckland University, Auckland, New Zealand.
Frohlich, J. and Rodi, W. 2004. LES of the flow around a circular of finite height. Int. J. Heat Fluid Flow. 25, 537-548.
Grimaldi, C., Gaudio, R., Calomino, F. and Cardoso, A. H. 2009. Countermeasures against local scouring at bridge piers: slot and combined system of slot bed sill. J. Hydraul. Eng. ASCE.135(5): 425-431.
Hassanzadeh, Y., Hakimzadeh, H. and Ayari, S. 2012. Study the effects of bridge pier shape on the flow pattern using the Fluent software. Iran-Water Resour. Res. 7(4): 95-105 (in Persian)
Hassanzadeh, Y., Kardan, N. and Hakimzadeh, H. 2015. 3D numerical studying into combined models of pier shape and slot in reducing the bed shear stresses starter of scouring around the bridge pier. J. Civil Environ. Eng. 44(4): 39-50 (in Persian)
Kappler, M. 2002. Experimentelle untersuchung der umstromung von kreiszylinder mit ausgepragt dreidimensionalen effekten. Ph. D. Thesis. Institute for Hydromechanics, University of Karlsruhe. (in Germany)
Kardan, N., Hakimzadeh, H. and Hassanzadeh. Y. 2015. 3D numerical simulation of hydrodynamic parameters around the bridge piers using various turbulence models. J. Irrig. Sci. Eng. 37(4): 39-54. (in Persian)
Kumar, V., Rang-Raju, K. G. and Vittal, N. 1999. Reduction of local scour around bridge piers using slot and collars. J. Hydraul. Eng. ASCE. 125(12): 1302-1305.
Laursen, E. M. and Toch, A. 1956. Scour around bridge piers and abutments. Iowa Highway Research Board Bulletin, No. 4, Bureau of Public Roads, Iowa.
Melville, B. W. 1975. Local scour at bridge sites. Ph. D. Thesis. Department of Civil Engineering, University Auckland. Report No. 117.
Melville, B. W. and Sutherland, A. J. 1988. Design method for local scour at bridge piers. J. Hydraul. Eng. ASCE. 114(9): 1210-1226.
Melville, B. W. and Coleman, S. E. 2000. Bridge Scour. Water Resources Publication LLC, Highlands Ranch, Colorado, U.S.A.
Raudkivi, A. J. 1998. Loose Boundary Hydraulics. 3rd Ed. Rotterdam, Brookfield.
Raudkivi, A. J. and Ettema, R. 1983. Clear water scour at cylindrical piers. J. Hydraul. Eng. ASCE.
103(10): 1209-1213.
Rodi, W. 1997. Comparison of LES and RANS calculation of the flow around bluff bodies. J. Wind Eng. Ind. Aerod. 69(71): 55-75.
Roshangar, K. and Rouhparvar, B. 2012. Evaluation of artificial intelligence systems for simulation of bridge piers scouring in cohesive soils. Water Soil Sci. 23(3): 169-181. (in Persian)
Roulund, A., Sumer, B. M., Fredsoe, J. and Michelsen, J. 2005. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351-401.
Salaheldin, T. M., Imran, J. and Chaudhry, H. 2004. Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. ASCE. 130(2): 91-99.
Schlichting, H. and Gersten, K. 2000. Boundary Layer Theory. 8th Revised and Enlarged Edition. Springer, Berlin.
Shen, H. W., Schneider, V. R. and Karaki, S. S. 1969. Local scour around bridge piers. J. Hydraul. Div. 95(6): 1991-1940.
Tseng, M. H., Yen, C. L. and Song, C. S. 2000. Computational three-dimensional flow around square and circular piers. Int. J. Numer. Meth. Fluids. 34, 207-227.