Ackers, P. 1993. Stage-discharge functions for two stage channels: The impact of new research. J. Inst. Water Environ. Manage. 7(1): 52-59.
Al-Khatib, I. A., Abaza, Kh. A. and Fkhidah, I. A. 2014. Prediction of zonal and total discharges in smooth straight prismatic compound channels using regression modeling. Flow Meas. Instrum. 38, 40-48.
Atabay, S. and Knight, D. 2006. 1-D modelling of conveyance, boundary shear and sediment transport in overbank flow. J. Hydraul. Res. 44(6): 739-754.
Azhdary-Moghadam, M. and Tajnesaie, M. 2010. Numerical modeling of secondary current cells in trapezoidal channels with uniform roughness. J. Model. Eng. 8(20): 57-70. (in Persian)
Babaeyan-Koopaei, K., Ervine, D. A., Carling, P. A. and Cao, Z. 2002. Velocity and turbulence measurements for two overbank flow events in River Severn. J. Hydraul. Eng. 128(10): 891-900.
Bousmar, D. and Zech, Y. 1999. Momentum transfer for practical flow computation in compound channels. J. Hydraul. Eng. 125(7): 696-706.
Conway, P., O'Sullivan, J. J. and Lambert, M. F. 2012. Stage-discharge prediction in straight compound channels using 3D numerical models. Proceedings of the Institution of Civil Engineers, Water Management. 166(1): 3-15. doi:10.1680/wama.11.00015
Dehdar-Behbahani, S. and Parsaie, A. 2016. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alexandria Eng. J. 55(1): 467-473. doi:10.1016/j.aej.2016.01.006.
Hamidifar, H. and Omid, M. H. 2013. 3D simulation of flow in open compound channels by Flow 3D model. Proceeding of the 11th Iranian Hydraulic Conference. Urmia. Iran. (in Persian)
Huthoff, F. A. C., Roos, P., Augustijn, D. and Hulscher, S. 2008. Interacting divided channel method for compound channel flow. J. Hydraul. Eng. 134(8): 1158-1165.
Khatua, K., Patra, K. C. and Mohanty, P. K. 2012. Stage-discharge prediction for straight and smooth compound channels with wide floodplains. J. Hydraul. Eng. 138(1): 93-99.
Knight, D. W. and Demetriou, J. D. 1983. Flood plain and main channel flow interaction. J. Hydraul. Eng. 109(8): 1073-1092.
Knight, D. W. and Hamed, M. E. 1984. Boundary shear in symmetrical compound channels. J. Hydraul. Eng. ASCE. 110(10): 1412-1429.
Kordi, H., Amini, R., Zahiri, A. and Kordi, E. 2015. Improved Shiono and Knight method for overflow modeling. J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001239.
Mohanta, A., Naik, B., Patra, K. C. and Khatua, K. K. 2014. Experimental and numerical study of flow in prismatic and non-prismatic section of a converging compound channel. Int. J. Civil Eng. Res. 5(3): 203-210.
Mohseni, M., Mohammad-Vali-Samani, J. and Ayoubzadeh, S. A. 2013. Distribution of velocity in open compound channels with vegetated floodplains. J. Hydraul. 8(3): 63-75. (in Persian)
Moreta, P. J. and Martin-Vide, J. P. 2010. Apparent friction coefficient in straight compound channels. J. Hydraul. Res. 48(2): 169-177.
Myers, W. 1978. Momentum transfer in a compound channel. J. Hydraul. Res. 16(2): 139-150.
Myers, W. and Brennan, E. 1989. Flow resistance in compound channels. J. Hydraul. Res. 28(2): 141-155.
Othman, F. and Valentine, E. M. 2006. Numerical modelling of the velocity distribution in a compound channel. J. Hydrol. Hydromech. 54(3): 269-279.
Ozbek, T. and Cebe, K. 2003. Comparison of methods for predicting discharge in straight compound channels using apparent shear stress consepts. Turk. J. Eng. Environ. Sci. 28(2): 101-109.
Parsaie, A. 2016. Analyzing the distribution of momentum and energy coefficients in compound open channel. Model. Earth Syst. Environ. 2, 1-5. doi:10.1007/s40808-015-0054-x.
Parsaie, A. and Haghiabi, A. H. 2015a. Computational modeling of pollution transmission in rivers. Appl. Water Sci. doi:10.1007/s13201-015-0319-6.
Parsaie, A. and Haghiabi, A. H. 2015 b. The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resour. Manage. 29, 973-985. doi:10.1007/s11269-014-0827-4.
Parsaie, A., Haghiabi, A. H. and Moradinejad, A. 2015. CFD modeling of flow pattern in spillway’s approach channel Sustainable. Water Resour. Manage. 1, 245-251. doi:10.1007/s40899-015-0020-9.
Rameshwaran, P. and Naden, P. 2003. Three-dimensional numerical simulation of compound channel flows. J. Hydraul. Eng. 129:(8), 645-652.
Sellin, R. H. J. 1964. A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche. 19(7): 793-801.
Shiono, K. and Knight, D. W. 1991. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech. 222, 617-646.
Tang, X. and Knight, D. W. 2009. Analytical models for velocity distributions in open channel flows. J. Hydraul. Res. 47(4): 418-428.
Teymourei, E., Barani, G. A., Janfeshan, H. and Dehghanie, A. A. 2013. Coefficient estimate flood flow channels comprising secondary. J. Basic Appl. Sci. Res. 3(2s): 639-646.
Thornton, C. I., Abt, S. R., Morris, C. E. and Fischenich, J. C. 2000. Calculating shear stress at channel-overbank interfaces in straight channels with vegetated floodplains. J. Hydraul. Eng. 126(12): 929-936.
Tominaga, A., Nezu, L., Ezaki, K. and Nekagawa, H. 1989. Three-dimensional turbulent structure in straight open channel flows. J. Hydraul. Res. 27(1): 149-173.
Yang, K., Cao, S. and Knight, D. W. 2007. Flow patterns in compound channels with vegetated floodplains. J. Hydraul. Eng. 133(2): 148-159.
Younesi, H. A., Omid, M. H. and Ayyoubzadeh, S. A. 2013. The hydraulics of flow in non-prismatic compound channels. J. Civil Eng. Urban. 3(6): 342-356.