- نوروزیان ز. 1393. برآورد هدایت هیدرولیکی اشباع خاک با استفاده از روشهای رگرسیونی و شبکه عصبی مصنوعی. پایان نامه کارشناسی ارشد دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم زراعی، گروه علوم خاک.
- Agyare, W.A., S.J. Park., and P.L.G. Vlek. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone J. 6:423-431.
- Aimrun, W., and S.M.Amin. 2009. Pedo-transfer functions for saturated hydraulic conductivity of lowland paddy soils. Paddy Water Environ. 7:217-225.
- Blake, G.R., and K.H. Hartge. 1986. Bulk density. In: Klute, A. (Ed.). Methods of Soil Analysis. Part 1, second ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Adv Soil Sci. 9:177-213.
- Botulaa, Y.D., W.M. Cornelisa., G. Baertb., and E. Van Ranste. 2012. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo. Agric Water Manag. 111:1-10.
- Braud I, A., C.Dantas-Antonino.,And M. Vauclin. 1995. A stochastic approach to studying the influence of the spatial variability of soil hydraulic properties on surface fluxes. J Hydrol. 165: 283–310.
- Donatelli, M., and M. Acutis. 2001. Soil par 2.00 beta-help. Research Institute for industrial Crops. Via corticella 133, 40128 Bbologna. Italy.
- Elrick, D.E., and W.D. Reynolds. 1992. Infiltration from constant-head well permeameters and infiltrometers. In: Topp, G.C., Reynolds, W.D., Green, R.E. (Eds.), Advances in Measurements of Soil Physical Properties: Bringing Theory into Practice. SSSA Spec. Publ. 30. SSSA, Madison, WI.
- Frate, F.D., P. Ferrazoli.,and G. Schiavon. 2003. Retrieving soil moisture and agricultural variables by microwave radiometry using neural network. Remote Sens. Environ. 84:174-183.
- Haghverdi, A., H.S. Ozturk., S. Ghodsi., and T. Tuncay. 2012. Estimating saturated hydraulic conductivity using different wellknownpedotransfer function. Instructions for Short Papers forThe 8th International Symposium Agro Environ, 2012 Conference, Wageningen, Ankara.
- Haverkamp, R., F.J. Leij., C. Fuentes., A. Sciortino., and P.J. Ross. 2005. Soil water retention: I. Introduction of a shape index. Soil Sci. Soc. Am. J. 69: 1881–1890.
- Hill, M. 1998. Methods and guidelines for effective model calibration. U.S. Geological survey Water- Resources Investigations Report,Denver, Colorado.
- Ghanbarian-Alavijeh, B., A.M. Liaghat., and S. Sohrabi. 2010. Estimating saturated hydraulic conductivity from soil physical properties using neural networks model. World Acad. Science. Engin.Technol. 62:131-136.
- GhorbaniDashtaki, S.M., M. Homaee., and H. Khodaverdiloo. 2010. Derivation and validation of pedotransferfunctions for estimating soil water retention curve using a variety of soil data. Soil Use and Mange. 26:68-74.
- Lin, L.I.K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45:255-268.
- Lu, M., Abourizk, S.M. and Hermann, U.H.,Sensitivity Analysis of neural networks in spool fabrication productivity studies. J. Comput. Civ. Eng. 15:4(299), 299-308.
- Kianpoor-kalkhajeh, U., R. Rezaie-Arshad., H. Amerikhah., and M. Sami. 2012. multiplelinear regression, artificial neural network and ANFIS modelimg the saturated hydraulic conductivity. InterJAgric Res Review. 2(3):255-265.
- Kim, M., and J.E. Gilley. 2008. Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Comput Electron Agric. 64:268–275.
- Klute, A. 1986. Methods of Soil Analysis. Part 1, physical and mineralogical methods, American Society of Agronomy, Agronomy Monographs 9(1), Madison, Wisconsin, USA.
- Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, A. Klute, Ed. Soil Science Society of America, Madison, WI.
- Marcel, G.S., J.L. Feike., T. Martinus., and H. van Genuchten. 1998. Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil SciSoc Am J. 62: 847-855.
- Mallants, D., D. Jaques.,P.H. Tseng., H. Van Genuchten., And J. Feyen. 1997. Comparison of three hydraulic property measurement methods. J hydrol. 199: 295-318.
- Morgan, R.P.C. 2005. Soil erosion & Conservation. Third edition. Blackwell Publishing. United Kingdom.
- Nelson, D.W., and L.P. Sommers. 1986. Total carbon, organic carbon and organic matter. In: page. A.L. Ed. Methods of Analysis. Soil SciSoc Am J. 2:539-579.
- Osborne, J. 2010. Improving your data transformations: Applying the Box-Cox transformation. North Carolina State University, A peer-reviewed electronic journal. Prac Assess, Res Eval. 15(12):2.
- Pachepsky,Ya., A.D. Timlin., And G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil SciSoc Am J. 60:727-733.
- Page, A., R. Miller., and D. Keeney. 1982. Methods of Soil Analysis.2th ed. Part2: Chemical and biological properties. Soil SciSoc Am J. Inc. Publisher.
- Rasoulzade, A. 2011. Estimating hydraulic conductivity using pedotransfer functions. Hydraulic Conductivity – Issues. Determination and Applications,Prof. LakshmananElango (Ed.), ISBN: 978-953-307-288-3, InTech, Available from: http://www.intechopen.com/books/hydraulic conductivity-issues-determinationand-applications/estimating-hydraulic-conductivity-using-pedotransfer-functions.
- Rogiers, B., D. Mallants., O. Batelaan., M. Gedeon., M. Huysmans., and A. Dassargues. 2012. Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks. Inter Assoc Math Geosci. 44:739-763.
- Schaap, M.G., and F.J. Leij. 1998. Using neural networks to predict soil water retention and hydraulic conductivity. Soil TillRes.47: 37-42.
- Schaap, M.G., F.J. Leij.,And H. Van Genuchten. 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J hydrol. 251: 163-176.
- Shirazi, M.A., and L. Boersma. 1984. A unifying quantitative analysis of soil texture. Soil SciSoc Am J. 48:142-147.
- Tang, L., G. Zeng., F. Nourbakhsh., L. Guoli.,And G.L. Shen. 2009. Artificial Neural Network Approach for Predicting Cation Exchange Capacity in Soil Based on Physico-Chemical Properties. Environ Eng Sci. 26(1): 137-146.
- Tekin, E., and S.O. Akbas. 2011. Artificial neural networks approach for estimating the groutability of granular soils with cement-based grouts. B EngGeol Environ. 70:153–161.
- Walkley, A., and I.A. Black. 1934. An examination of the degtjareff method fordetermining soil organic matter and a proposed modification of the chronic acid titration method. Soil SciSoc Am J. 37:29-39.
- Westeman, R.E.L. 1990. Soil testing and plant analysis. Soil Society Science America Jurnal. Madison, Wisconsin. USA.
- Wosten, J.H.M., P.A. Finke.,And M.J.W. Jansen. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma. 66:227–237.
- Wosten, J.H.M., Y.A. Pachepsky., and W.J. Rawls. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. JHydrol. 251: 123-150.
- Xiangsheng, Y., L. Guosheng., and Y. Yanyu. 2013. Comparison of three methods to develop pedotransfer functions for the saturated water content and field water capacity in permafrost region. Cold RegSci Technol. 88:10-16.
- Yetilmezsoy, K., and S. Demirel. 2008. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J Hazard Mater. 153: 1288–1300.
- Yilmaz, I., and O. Kaynar. 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl. 38: 5958–5966.
- Zorluer, I., Y. Icaga., S. Yurtcu., and H. Tosun. 2010. Application of a fuzzy rule-based method for the determination of clay dispersibility. Geoderma. 160: 189–196.
|