Atashpaz-Gargari, C. L. and Lucas, C. 2007. Imperialist competitive algorithm: an algorithm for optimization inspires by imperialistic competition. IEEE Congress on Evolutionary Computation. Sep. 25-27. Singapore.
Barati, R., Akbari, Gh. and Arami, M. 2010. New algorithm for estimating the non-linear Maskingham relatioen. 9th Conference of Hydraulic. Nov. 8-10. Tehran. Iran. (in Persian)
Chaudhury, P., Shrivastava, R. and Narulkar, S. 2002. Flood routing in river networks using equivalent Muskingum inflow. J. Hydrol. Eng. 7, 413-419.
Chen, J. and Yang, X. 2007. Optimal parameter estimation for Muskingum model based on gray encoded accelerating genetic algorithm. Commun. Nonlinear Sci. Numer. Simul. 12(5): 849-858.
Chow, V. T. 1973. Open Channel Hydraulic. 3rd Ed. McGraw Hill Book Company. New York. Inc.
Chu, H. J. and Chang, L. C. 2009. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J. Hydrol. Eng. 14, 1024-1027.
Das, A. 2004. Parameter estimation for Muskingum models. J. Irrig. Drain. Eng. 2, 140-147.
Geem, Z. W. 2000. Optimal design of water distribution networks using harmony search. Ph. D Thesis. Department of Civil and Environmental Engineering. Korea University.
Gill, M. A. 1978. Flood routing by Muskingum method. J. Hydrol. 36, 353-363.
Hamedi, F., Bozorg Haddad, O. and Vatankhah, A. 2012. Improving the non-linear Maskingham model using a novel hybrid storage model. 5th Conference of Water Resources Management. Feb. 17-18. Tehran. Iran. (in Persian)
Holland, J. 1975. Adaptation in Natural and Artificial System. University of Michigan Press.
Karahan, H., Gurarslan, G. and Geem, Z. W. 2013. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J. Hydrol. Eng. 18, 352-360.
Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Network. Perth. Australia.
Kim, J. H., Geem, Z. W. and Kim, E. S. 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. As. 37, 1131-1138.
McCarthy, G. T. 1938. The unit hydrograph and flood routing. Proceeding of Conference of North Atlantic Division. U. S. Army Corps of Engineers. Washington, DC.
Mohammadi-Ghaleni, M., Bozorg-Haddad, O. and Ebrahimi, K. 2010. Optimizing the non-linear Muskingum parameters by SA algorithm. J. Soil Water. 24(5): 908-919. (in Persian)
Mohan, S. 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm.
J. Hydraul. Eng. 123, 137-142.
Samani, H. M. V. and Shamsipour, G. A. 2004. Hydrologic flood routing in branched river systems via nonlinear optimization. J. Hydraul. Res. 42(1): 55-59.
Shah-Hosseini, Sh., Moosavi, H. M. and Mollajafari, M. 2011. Meta-Heuristic Algorithms: Theory and Implementation in Matlab. Iran University of Science and Technology Pub. (in Persian)
Singh, V. P. and Scarlatos, P. D. 1987. Analysis of nonlinear Muskingum flood routing. J. Hydrol. Eng. 113, 61-79.
Tang, R., Fong, S., Yang, X. S. and Deb, S. 2012. Integrating nature-inspired optimization algorithm to
K-means clustering. Proceeding of 7th International Conference of Digital Information Management (ICDIM). Macau. China.
Tung, Y. K. 1985. River flood routing by nonlinear Muskingum method. J. Hydrol. Eng. 111,
1447-1460.
Wilson, E. M. 1974. Engineering Hydrology. 2nd Ed. MacMillan Pub. United Kingdom.