- نصراصفهانی، م. 1392. بررسی تغییرات الگوی بیان پروتئینها و ایزوزیمهای سوپراکسیددیسموتاز گرهک تحت شرایط تنش خشکی در همزیستی بین نخود با سه سویه Mesorhizobium ciceri. زیست شناسی خاک. شماره 2، جلد 1: 82-71
- Bargaz, A. Ghoulam, C. Drevon, J.J. 2013. Specific expression and activity of acid phosphatases in common bean nodules. Plant Signaling and Behavior 8(8): 1-8.
- Bargaz, A. Ghoulam, C. Faghire, M. Aslan-Attar, H. Drevon, J.J. 2011. The nodule conductance to O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53: 157-164.
- Cabeza, R.A. Liese, R. Lingner, A. Von Stieglitz, I. Neumann, J. Salinas-Riester, G. Pommerenke, C. Dittert, K. and Schulze, J. 2014. RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. Journal of Experimental Botany 65: 6035-6048.
- Chen, Z. Cui, Q. Liang, C. Sun, L. Tian, J. and Liao, H. 2011. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11: 4648-4659.
- Ciereszko, I. Szczygła, A. Żebrowska, E. 2011. Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. Journal of Plant Nutrition 34: 815-829.
- Dick, C.F. Dos-Santos, A.L.A. Meyer-Fernandes, J.R. 2011. Inorganic phosphate as an important regulator of phosphatases. Enzyme Research 2011: 1-7.
- Dionisio, G. Madsen, C.K. Holm, P.B. Welinder, K.G. Jørgensen, M. Stoger, E. Arcalis, E. and Brinch-Pedersen, H. 2011. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.), Maize (Zea maize L.) and Rice (Oryza sativa L.). Plant Physiology 156(3): 1087-1100.
- Fang, Z. Shao, C. Meng, Y. Wu, P. Chen, M. Phosphate signaling in Arabidopsis and Oryza sativa. 2009 Plant Science 176:170-180.
- Franco-Zorrilla, J.M. Martín, A.C. Leyva, A. Paz-Ares, J. 2005. Interaction between Phosphate-Starvation, Sugar, and Cytokinin Signaling in Arabidopsis and the Roles of Cytokinin Receptors CRE1/AHK4 and AHK3. Plant Physiology 138: 847-857.
- Franco-Zorrilla, J.M. Martin, A.C. Solano, R. Rubio, V. Leyva, A. and Paz-Ares, J. 2002. Mutations at CRE1 impair cytokinin‐induced repression of phosphate starvation responses in Arabidopsis. The Plant Journal 32: 353-360.
- Gaude, N. Nakamura, Y. Scheible, W.R. Ohta, H. and Dörmann, P. 2008. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal 56: 28-39.
- Ha, C.V. Nasr Esfahani, M. Watanaba, Y. Tran, U. T. Sulieman, S. Mochida K. Nguyen D.V. and Tran, L.S.P. 2014. Genome-Wide Identification and Expression Analysis of the CaNAC Family Members in Chickpea during Development,Dehydration and ABA Treatments. PLOS ONE 5: 1-22
- Kleinert, A. Venter, M. Kossmann, J. Valentine, A. 2014. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation. Journal of Plant Physiology 171: 1619-1624.
- Kusano, M. Fukushima, A. Kobayashi, M. Hayashi, N. Jonsson, P. Moritz, T. Ebana, K. and Saito, K. 2007. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. Journal of Chromatography B 855: 71-79.
- Larrainzar, E. Gil-Quintana, E. Seminario, A. Arrese-Igor, C. and González, E.M. 2014. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Frontiers in Microbiology 5: 447.
- Le, D.T. Nishiyama, R. Watanabe, Y. Tanaka, M. Seki, M. Ham, L.H. Yamaguchi-Shinozaki, K. Shinozaki, K. and Tran, L.S.P. 2012. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLOS ONE 7(11): 1-10.
- Liang, C. Tian, J. Lam, H.M. Lim, B.L. Yan, X. and Liao, H. 2010. Biochemical and Molecular Characterization of PvPAP3, a Novel Purple Acid Phosphatase Isolated from Common Bean Enhancing Extracellular ATP Utilization. Plant Physiology 152: 854-865.
- López-Arredondo, D.L. Leyva-González, M.A. González-Morales, S.I. López-Bucio, J. Herrera-Estrella, L. 2014. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65: 95-123.
- Nagarajan, V.K. Jain, A. Poling, M.D. Lewis, A.J. Raghothama, K.G. and Smith, A.P. 2011. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs, and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology 156(3): 1149-1163.
- Nasr Esfahani, M. Sulieman, S. Schulze, J. Yamaguchi-Shinozaki, K. Shinozaki, K. and Tran, L.S.P. 2014. Approaches for enhancement of N2 fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. Plant Biotechnology Journal 12: 387-397.
- Olivera, M. Tejera, N. Iribarne, C. Ocaña, A. and Lluch, C. 2004. Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum 121: 498-505.
- Qin, L. Zhao, J. Tian, J. Chen, L. Sun, Z. Guo, Y. Lu, X. Gu, M. Xu, G. and Liao, H. 2012. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiology159: 1634-1643.
- Ramírez, M. Flores-Pacheco, G. Reyes, J.L. Álvarez, A.L. Drevon, J.J. Girard, L. and Hernández, G. 2013. Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-Mediated PvPHO2 regulation within the PvPHR1 signaling pathway. International Journal of Molecular Sciences 14: 8328-8344.
- Remy, E. Cabrito, T.R. Batista, R.A. Teixeira, M.C. Sá-Correia, I. and Duque, P. 2012. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytologist 195: 356-371.
- Schulze, J. Temple, G. Temple, S.J. Beschow, H. and Vance, C.P. 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany 98: 731-740.
- Sulieman, S, Tran, L.S.P. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Science 239: 36-43.
- Sulieman, S. Ha, C.V. Schulze, J. Tran, L.S.P. 2013, Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany 64: 2701-2712.
- Sun, S. Gu, M. Cao, Y. Huang, X. Zhang, X. Ai, P. Zhao, J. Fan, X. and Xu, G. 2012. A Constitutive Expressed Phosphate Transporter, OsPht1;1, Modulates Phosphate Uptake and Translocation in Phosphate-Replete Rice. Plant Physiology 159: 1571-1581.
- Uhde-Stone, C. Gilbert, G. Johnson, J.F. Litjens, R. Zinn, K. Temple, S. Vance, C. and Allan, D. 2003. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248: 99-116.
- Valdés-López, O. and Hernández, G. 2008.Transcriptional regulation and signaling in phosphorus starvation: what about legumes? Journal of Integrative Plant Biology 50: 1213-1222.
- Valentine, A.J. Benedito, V.A. Kang, Y. 2011. Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. Annual Plant Reviews 42: 207-248
- Vance, C.P. Uhde-Stone, C. Allan, D.L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157, 423-447.
- Wang, X. Wang, Y. Tian, J. Lim, B.L. Yan, X. and Liao, H. 2009. Overexpressing AtPAP15 Enhances phosphorus efficiency in soybean. Plant Physiology151, 233-240.
- Zhang, D. Song, H. Cheng, H. Hao, D. Wang, H. Kan, G. Jin, H. and Yu, D. 2014. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress. PLOS Gen 10 (1): 1-16.
- Zhang, W. Gruszewski, H.A. Chevone, B.I. Nessler, C.L. 2008. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiology 146: 431-440
|