- پوررضا بیلندی، م و خاشعی سیوکی، ع 1394. تحلیل عدم قطعیت خروجی مدل شبکه عصبی در شبیهسازی هدایت هیدرولیکی اشباع خاک. نشریه علمی پژوهشی آبیاری و زهکشی ایران . شماره 4 جلد 9 آبان 94 ص 655-664
- جلالی ، و ، ع خاشعی سیوکی و م همایی 1392. مقایسه روش های زمین آماری با روش غیرپارامتریک-k نزدیک ترین همسایه برای برآورد هدایت هیدرولیکی اشباع خاک. مجله علمی پژوهشی حفاظت آب و خاک گرگان.20(5). 147-162.
- ریاحی مدوار، ح، خاشعی سیوکی ، ع و سیفی اکرم. 1395. تحلیل دقت و عدم قطعیت شبکه عصبی مصنوعی در پیش بینی عملکرد زعفران مبتنی بر داده های اقلیمی در استان خراسان جنوبی. مجله علمی پژوهشی فناوری و زراعت زعفران دانشگاه تربت حیدریه. پذیرش
- Aqil, M., Kita, I., Yano, A., and Nishiyama, S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, 337, 22-34.
- Biggar, J. W. and Nielsen D. R. 1976. The spatial variability of the leaching characteristics of the field soil. Water Resource Research. 12: 78-84.
- Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science. 9:177–213.
- Camacho, J . Martin, J , WilliamMc A , Hugo R, PeterSuscy, S. 2014. Uncertainty analysis of estuarine hydrodynamic models: an evaluation of input data uncertainty in the weeks bay estuary, Alabama. Applied Ocean Research 47 138–153
- Dybowski, R. 1997 . Assigning confidence intervals to neural network predictions." Technical report, Division of Infection (St Thomas’ Hospital), King’s CollegeLondon.
- Eckhardt, K., Breuer, L., and Frede, H. G. (2003). "Parameter uncertainty and the significance of simulated land use change effects." Journal of Hydrology, 273, 164-176.
- Khashei-siuki. A and Sarbazi. (2015).Evolution of ANFIS, ANN and geostatistic models to spatial distribution of groundwater quality ( case study: Mashhad plain in Iran). Arabian Journal of Geosciences. Springer. 8:903–912
- Jung W. K., Kitchen N. R., Sudduth K. A., and Anderson S. H. 2006. Spatial Characteristics of Claypan Soil Properties in an Agricultural Field. Soil Science Society of America Journal. 70:1387–1397.
- Marce, R., Comerma, M., García, J. C., and Armengol, J. 2004. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography: Methods, 2, 342-355.
- Miller, E. E., and Miller R. D. Physical theory for capillary flow phenomena. Journal of Applied Physics. 27:324–332.
- Riahi-Madvar, H., Ayyoubzadeh, S. A. Namin ,M. M. Seifi A. 2011.Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows. J. Hydrol. Hydromech., 59, 2011, 3, 171–183 .
- Riahi-Madvar, H., Ayyoubzadeh, S.A. 2010. Uncertainty analysis of ANN and ANFIS techniques in comparison with regime equations for determining regime channel geometry. Fifth International Conference on Water Resources and Environment Research 5th - 7th of July 2010 at Quebec City, Canada.
- Tayfur, G., Nadiri, A. A., and Moghaddam, A. A. 2014 Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management, 28(4), 1173-1184.
- Tibshirani, R. (1994). A Comparison of Some Error Estimates for Neural Network Models. Technical Working Paper No. 94-10, Department of Statistics, University of Toronto.
- Yao, R. J., Yang, J. S., Wu, D. H., Li, F. R., Gao, P., and Wang, X. P. 2015 Evaluation of pedotransfer functions for estimating saturated hydraulic conductivity in coastal salt-affected mud farmland. Journal of Soils and Sediments, 1-15.
|