Alavi, A. & Strange, R.N. 1979. A baiting for isolating Phytophthora drechsleri, causal agent of crown rot of Cucumis species in Iran. Plant disease reporter, 63: 1084−1086.
Alavi, A. & Strange, R.N. 1982. The relative susceptibility of some cucurbits to an Iranian isolate of Phytophthoradrechsleri. Plant Pathology, 31: 221−227.
Alexander, D.B. & Zuberer, D.A. 1991. Use of chrome azurol S reagent evaluates siderophore production by rhizosphere bacteria Biology and Fertility of Soils, 12: 39-45.
Alstrom, S. & Burns, R.G. 1989. Cyanid production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7: 232-238.
Blumer, C., Haas, D. 2000. Mechacism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173: 170-177.
Brazelton J.N., Pfeufer, E.E., Sweat, T.A., Mcspadden Gardener, B.B. & Coenen, C. 2008. 2,4-Diacetylphloroglucinol alters plant root development. Molecular Plant-Microbe Interactions, 21: 1349–1358.
Castaneda, G.C., Munoz, T.J.J. & VIDEA, J.R.P. 2005. A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical Journal, 81: 35-40.
Das, I.K., Indira, S., Annapurna, A. & Prabhakar, Seetharama, N. 2008. Biocontrol of charcoal rot in sorghum by fluorescent pseudomonads associated with the rhizosphere. Crop Protection, 27: 1407-–1414.
De Souza, J., Arnould, T., Deulvot, C., Lemanceau, P., Gianinazzi- Pearson, V. & Raaijmakers, J.M. 2003. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93: 966–975.
De Wager, L.A., Van Der Bij, A.J., Dekker, L.C., Simons, M., Wijffelman, C.A. & Lugtenberg, B.J.J. 1995. Colonization of the rhizosphere of crop plants by plant beneficial pseudomonads. FEMS Microbiology Ecology, 17: 221-22.
De Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. 2009. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology, 75: 4162–4174.
Delany, I., Sheehan, M.M., Fenton, A., Bardin, S., Aarons, S. & O'gara, F. 2000. Regulation of production of the antifungal metabolite 2,4- diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology, 146: 537-546.
Dowling, D.N. & O’gara, F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnology, 12: 133−144.
Duffy, B.K. & Défago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology,87: 1250-1257.
Ellis, R.J., Timms-Wilson, T.M. & Bailey, M.J. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Applied and Environmental Microbiology, 2(3): 247-284.
Ershad, Dj. 1992. Phytophthora Species in Iran (Isolation, Purification, Identifition). Agriculture Research Organization, pp. 217.
Erwin, D.C. & Ribeiro, O.K. 1996. Phytophthora capsici. Pages 262-268 in: Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul, MN.
Farzaneh, M., Shi, Z.Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfath M. & Javan-Nikkhah, M. 2012. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated frompistachio nuts of Iran. Food Control, 23:100-106.
Fiddaman, P.J. & Rossall, K. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal of Applied Bacteriology, 76: 395-405.
Ghafelebashi, S.S., Jamali, F. & Ahmadzadeh, M. 2014. Study of some biological and biochemical properties of Pseudomonas fluorescens UTPF68, biocontrol agent against Phytophtora drechsleri on cucumber. Biological Control of Pests & Plant Diseases, 3 (2): 105-106. (In Persian with English summary).
Haas, D. & Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature reviews, Microbiology, 3: 307–319.
Hagedorn, C., Gould, W.D. & Bardinelli, T.R. 1998. Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology, 55: 2793−2797.
Harrison, L.A., Letendre, L., Kovacevich, P., Pierson, E. & Weller, D.M. 1993. Purification of an antibiotic effective against Gaeumanomyces graminis var. tritici produced by a biocontrol agent Pseudomonas aureofaciens. Soil Biology & Biochemistry, 25: 215-221.
Hwang, B.K. & Kim, C.H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Disease, 79: 221−227.
Kaur, R., Macleod, J., Foley, W. & Nayudu, M. 2006. Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry, 67: 595–604.
Keel, C. & Defago, G. 1997. Interactions between beneficial soil bacteria and root pathogens: mechanism and ecological imoact. pp. 27-46. In: Multitrophic Intractions in Terrestrial Systems. Gange, A.C. & Brown, V.K. (eds.), Blackwell Scientific Publishers, London, England.
Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. & Défago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4- diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5: 4−13.
Kraus, J. & Loper, J.E. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 61: 849- 854.
Kreutzer, W.A., Bodine, E.W. & Durrell, L.W. 1940. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology, 30: 972−976.
Lamour, K.H. & Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90: 396−400.
Loper, J.E. & Henkels, M.D. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Applied and Environmental Microbiology, 65: 5357-5363.
Maleki, M., Mokhtarnejad, L. & Mostafaee, S. 2011. Screening of rhizobacteria for biological control of cucumber root and crown rot caused by Phytophthora drechsleri. The Plant Pathology Journal, 27(1): 78-84.
Mansoori, B. & Banihashemi, Z. 1982. Evaluating cucurbit seedling resistance to Phytophthora drechsleri. Plant Disease, 66: 373-376.
Marilley, L. & Arango, M. 1990. Phytopathogenic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13: 127-136.
Maurhofer, M., Keel, C. & Defago, G. 1995. Infuence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced production. Plant Pathology, 44: 40-50.
Mavrodi, O.V., Mcspadden Gardener, B.B., Mavrodi, D.V., Bonsall, R.F., Weller D.M. & Thomashow, L.S. 2001. Genetic diversity of phlD from 2, 4- diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology,91: 35-43.
Mcspadden Gardener, B.B., Mavrodi, D.V., Thomashow, L.S. & Weller, D.M. 2001. A rapid polymerase chain reactionbased assay characterizing rhizosphere populations of 2,4- diacetylphloroglucinol producing bacteria. Phytopathology, 91: 44−54.
Mcspadden Gardener, B.B., Schroeder, K.L., Kalloger, S., Raaijmakers, J.M., Thomashow, L.S. & Weller, D.M. 2000. Genotypic and phenotypic diversity of phlD containing Pseudomonas strains isolated from the rhizosphere of wheat. Applied and Environmental Microbiology,66: 1939−1946.
Meyer, S.L.F., Halbrendt, J.M., Carta, L.K., Skantar, A.M., Liu, T., Abdelnabby H.M.E. & Vinyard, B.T. 2009. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to Plant-parasitic and Bacterial-feeding Nematodes. Journal of Nematology, 41(4): 274–280.
Niknejad Kazempour, M. 2006. Effect of Pseudomonas fluorescens isolates on Rhizoctonia solani Kühn the Causal Agent of Sheath Blight on Rice. Journal of Agricultural Sciences, 12 (4): 729-744. (In Persian with English summary).
O 'sullivan, M., Stephens P.M. & O’gara, F. 1991. Extracellular protease production by fluorescent Pseudomonas spp. and the colonization of sugarbeet roots and soil. Soil Biology & Biochemistry, 23: 623-627.
Ristaino, J.B. & Johnston, S.A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83: 1080−1088.
Schippers, B., Bakker, A.W. & Bakker, A.H.M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Phytopathology, 25: 39-59.
Shanahan, P., O’ Sullivan, D.J., Simpson, P., Glennon, J.D., & O’Gara, F. 1992. Isolation of 2, 4-diactylphlorogluciol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production: Applied and Environmental Microbiology, 58(1): 353-358.
Sharifi-Tehrani, A., Zala, M., Natsch, A., Moënne-Loccoz, Y. & Defago, G. 1998. Biocontrol of soil-born fungal plant diseases by 2,4-diacetylphloroglucinol-producting fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology, 104: 631-643.
Shirzad, A., Fallahzadeh-Mamaghani, V. & Pazhouhandeh, M. 2012. Antagonistic potential of fluorescent pseudomonads and control of crown an root rot of cucumber caused by Phythophtora drechsleri. The Plant Pathology Journal, 28(1): 1-9.
Sierra, G.A. 1957. Simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek, 23: 15–22.
Sperber J.I. 1958. The incidence of apatite-solubilizing organism in the rhizosphere and soil. Australian Journal of Agricultural Research, 9: 781-778.
Teniola, O.D., Addo, P.A., Brost, I.M., Farber, P., Jany, K.D., Alberts, J.F., Van Zyl, W.H., Steyn, P.S. & Holzapfel, W.H. 2005. Degradation of aflatoxin B(1) by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM 44556(T). International Journal of Food Microbiology, 105: 111-117.
Vessey, K.J. 2003. Plant growth–promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571 – 586.
Voisard, C., Keel, C., Haas, D. & De'fago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobitic conditions. The EMBO Journal, 8: 351-358.
Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moenne-Loccoz, Y. & Defago, G. 2001. Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiology Ecology, 37: 105−116.
Weller, D.M. & Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 78: 463-469.
Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26: 379-407.